Name \qquad Date \qquad Lab\# \qquad
Lab Partner \qquad

Density of Sand

I. Objective: to investigate the density of sand
II. Materials and Equipment:

1. 250 mL Beaker
2. 100 mL Graduated Cylinder
3. Balance
III. Procedure
4. Mass a dry, clean 100 mL graduated cylinder.
5. Pick up sand from your teacher in your 250 mL beaker.
6. Add 10.0 mL of sand to your graduated cylinder and record the mass.
7. Add another 10.0 mL and record.
8. Repeat step 3 , up to 90.0 ml .
IV. Data and Calculations:

Mass of sand and graduated cylinder--	Mass of graduated cylinder=	Mass of sand	Volume	$\mathrm{d}=\mathrm{m} / \mathrm{v}$	Density
0 g		----------------	0	-----------	------
			10.0 mL		
			20.0 mL		
			30.0 ml		
			40.0 mL		
			50.0 mL		
			60.0 mL		
			70.8 mL		
			80.0 mL		
			90.0 mL		

Add up all 9 densities \qquad
Average(divide by 9)

Graph

1. Label your axis with the proper units (independent X -axis, dependent Y -axis). Independent you control. Dependent is what you record.
2. Use a proper scale.
3. Plot your data.
4. Draw a best-fit line. (do not connect the dots, 1 straight line that represents all the points)

V. Questions:

Determine the slope. slope $=\frac{\Delta Y}{\Delta X}$

1. How do the densities of all the samples of sand compare?
2. According to your graph what will be the mass of 45.0 mL of sand?
3. According to your graph what will be the volume of 65.0 g of sand?
4. How does the slope of the graph relate to you average density?

VI. Conclusion

