Mr. Kent's Organic Chemistry Unit Notes

I Basic Concepts

A. Organic Chemistry-The study of ______ containing compounds.

 They occur extensively in nature because all living things are made of ______ containing compounds.

II Bonding

- $\mathbf{E} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2}p & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2}s & \mathbf{1} \end{bmatrix}$
- B. _____ will not only combine with other atoms, but will also bond with other _____atoms making for very large numbers of molecules.
- C. Organic compounds are more numerous than ______ compounds.

D. A major source of organic compounds is ______.

Which came from _____ many years ago.

III Characteristics

- 1. Generally, _____ molecules (SNAP)
- 2. _____ dissolves in water

Exceptions ______ & _____

- 3. Non-_____-generally do not conduct electricity in water, except ______
- 4. Melting Points are _____ due to _____ intermolecular forces
- 5. Chemical Reactions are _____ compared to inorganic reactions

IV Some Organic Compounds form ______.

- 1. Compounds with the same_____ but different
- 2. We draw structural formulas to avoid confusion
- 3. Example-C₃H₆O

- 4. As the number of carbon atoms increase, the number of Isomers will ______.
- V More bonding
 - 1. Carbon atoms that are bonded together by sharing _____ electrons form a _____bond
 - Carbon atoms that are bonded together by sharing ______ electrons form a ______bond
 - 3. Carbon atoms that are bonded together by sharing ______ electrons form a ______bond
 - 4. _____compounds contain ALL SINGLE BONDS
 - 5. _____ compounds contain NOT ALL SINGLE BONDS, but have double or triple bonds.

VI. Types of Organic Compounds

A. HYDROCARBONS

- 1. Contain only ______ and _____ atoms.
- Homologous Series (see table ____)- each sample of a homologous series differs by the previous by ____ carbon and _____hydrogen atoms
- 3. Boiling Points- As the number of carbon atoms increases the boiling points _____ due to _____ intermolecular forces.

ALKANES- Saturated hydrocarbons Nomenclature (Naming Rules)- end with "-ane" General Formula

# Carbons	prefix	Molecular formula	Name
1	Meth	CH ₄	
2	Eth	C_2H_6	
3	Prop	C_3H_8	
4	But	C_4H_{10}	
5	Penta	C ₅ H ₁₂	
6	Hexa	C ₆ H ₁₄	
7	Hept	C ₇ H ₁₆	
8	Oct	C ₈ H ₁₈	
9	Non	C ₉ H ₂₀	
10	Deca	$C_{10}H_{22}$	

 C_nH_{2n+2}

The first 3 alkanes have no isomers (they can only be drawn 1 way).

Isomers of Butane C₄H₁₀

Rule #1-Name the longest continuous chain of carbon atoms (with group), and end it with -ane.

Rule #2- Remaining side chains will be given the ending -yl.

Isomers of Pentane C₅H₁₂

Rule #3- Multiple side chains will use prefixes 2 is di-, 3 is tri-, 4 is tetra- and so on.

Isomers of Hexane C₆H₁₄

Rule #4- Give the *lowest number* location for each side chain if there is another possible location it could be located. Go back and fix the last 2 isomers

Isomers of Heptane C₇H₁₆

ннннннн с-с-с-с-с-с-с-с нннннн H٠ H H=Č нннн с-с-с-с-с нннн μ H٠ Ĥ Ĥ н н=с=н нн с-с-H. Ĥ н н н н н н-с-н H Н Н н с-с-н н ċ Ĩ н н-с-н H н Н н C-H н

Isomers of Octane C₈H₁₈

Rule #5- When there are 2 different side chains name them in alphabetical order using the carbon prefix (meth, eth..).

2. Alkenes-

A. Are ______ (not all single bonds) hydrocarbons (hydrogen and carbon only) containing 1 carbon to carbon double bond "C=C".

B. The rule for naming is they all end with "-ene".

C. The general formula is C_nH_{2n} , n is the number of carbons is used to determine the number of hydrogen atoms. Example n=5, so H=(2(5))=10

What is the first member of the Alkene homologous series?

Name_____ Formula_____

Rule #1-Name the longest chain with the double bond. It is not always the longest chain of carbons. End it with "-ene".

Rule #2-When necessary use the *lowest* number to give the location of double bond in the longest chain.

C. Alkynes- Are ______ (not all single bonds) hydrocarbons (hydrogen and carbon only) containing 1 carbon to carbon triple bond "C \equiv C".

The rule for naming is they all end with "-yne".

The general formula is C_nH_{2n-2} , n is the number of carbons is used to determine the number of hydrogen atoms. Example n=5, so H=(2(5)-2)=8

Rule #1-Name the longest chain with the triple bond. It is not always the longest chain of carbons. End it with "-yne".

Rule #2-When necessary use the *lowest* number to give the location of triple bond in the longest chain.

C3H4	н н_с≡с-с-н н	
C ₄ H ₆	н н н-с≡с-с-с-н н н	

C ₄ H ₆	н н н-с-с≡с-с-н н н	
C ₅ H ₈	ннн н-с≣с-с-с-с-с-н ннн	
C ₅ H ₈	н нн н-с-с≣с-с-с-н н нн	

4. Benzenes-

The rule for naming is they all end with "benzene".

The general formula is C_nH_{2n-6} , n is the number of carbons is used to determine the number of hydrogen atoms. Example n=8, so H=(2(8)-6)=10

Rule #1-Name the benzene ring. End it with "benzene".

Rule #2-When necessary use the *lowest* number to give the locations of side chains that come off the benzene.

5. Other Hydrocarbons

A. Dienes- Organic compound containing 2 separate carbon to carbon double bonds C=C

The rule for naming is they all end with "-diene".

The general formula is C_nH_{2n-2} , n is the number of carbons is used to determine the number of hydrogen atoms. Example n=4, so H=(2(4)-2)=6

Rule #1-Name the longest chain that contains both double bonds. End it with "diene".

Rule #2-When necessary use the *lowest* numbers to give the locations of both double bonds.

B.Trienes- Organic compound containing 3 separate carbon to carbon double bonds C=C

The rule for naming is they all end with "-triene".

The general formula is C_nH_{2n-4} , n is the number of carbons is used to determine the number of hydrogen atoms. Example n=6, so H=(2(6)-4)=8

Rule #1-Name the longest chain that contains both double bonds. End it with "triene".

Rule #2-When necessary use the *lowest* numbers to give the locations of both double bonds.

C. Cyclic compounds-Hydrocarbons in which the 2 ends of the chain are attached at the ends to form a ring

The rule for naming is they all start with "cyclo-".

Rule #1-Name the carbon ring. Start it with "cyclo".

B. Other Organic Compounds

- Functional Groups-the atom or group of atoms that characterizes the structure of a family of organic compounds and determines the properties
- 2. Halides
 - A. An organic compound containing one or more halogen atoms.
 - B. Nomenclature-Name the halogen like you would any other substituent group.

Chlorine-->Chloro Bromine-->Bromo

Iodine-->Iodo Fluorine-->Fluoro

C. Examples

3. Alcohols- are compounds in which one or more hydrogen atoms in an alkane have been replaced by a hydroxyl (-OH) group.

OH- is hydroxide, but in organic chemistry side chains end with "-yl".

R-OH

Types of Alcohols Monohydroxy Alcohols- contains 1 –OH group

Primary(1°)- the C-OH is attached to one other carbon (on the end) Secondary(2°)- the C-OH is attached to two other carbons Tertiary(3°)- the C-OH is attached to three other carbons

Primary Example

ннн н-с-с-с-он ннн	
--------------------------	--

Secondary

Tertiary Example

Dihydroxy Alcohols- contain 2 –OH group (ends with -____)

4. Organic Acids- An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids whose acidity is associated with their carboxyl group -COOH.

Nomenclature-carboxylic acids have an -oic acid suffix (e.g. octadecanoic acid)

Name	Expanded Structure
	о с—он
	н-с-он н-с-н
	н н о н-с-с-с-он н н
Name	Condensed Structure
	HCOOH
	CH ₃ COOH
	CH ₃ CH ₂ COOH
	C ₄ H ₉ COOH
·	C ₈ H ₁₇ COOH

5. Aldehydes-A compound with a carbon atom which is bonded to a hydrogen atom and double-bonded to an oxygen atom. This is found on the end of the chain, ketones have this carbon in the middle (no H either).

Nomenclature-The name is formed by changing the suffix -e of the parent alkane to -al, so that HCHO is named methanal, and $CH_3CH_2CH_2CHO$ is named butanal.

Expanded Structure	Name	Expanded Structure	Name
н О • ॥ н-с-с-н н		н н <mark>О</mark> н-с-с-с-н н н	

Synthesis

A primary alcohol reacts with an oxidizing agent to make an aldehyde

R-OH + Ox. Agent $\rightarrow \mathbf{R}$ H=O +H₂O

6. Ketones- A compound with a carbonyl group (O=C) linked to two other carbon atoms in the chemical compound. The C=O is found somewhere in the middle of the chain (not the end). Three carbons are needed to form a ketone.

Nomenclature- changing the suffix -e of the parent alkane to "-one"

Name	Expanded Structures	Name	Condensed Structures
		CH ₃ COCH ₃	
	н-с-с-с-н н н		CH ₃ COCH ₂ CH ₃
	н онн н-с-с-с-н		CH ₃ COCH ₂ CH ₂ CH ₃
		CH ₃ CH ₂ COCH ₂ CH ₃	
			CH ₃ COCH ₂ CH ₂ CH ₂ CH ₃

Synthesis

Ketones can be created by oxidation of secondary alcohols. The process requires a strong oxidizing agent.

$$H_3C-CH(OH)-CH_3 + ox. agent \rightarrow H_3C-CO-CH_3 + H_2O$$

7. Ethers-a chemical compound where and oxygen atom connects two substituted groups

 $R_1 - O - R_2$

Nomenclature-Ethers can be named by naming each of the two carbon groups as a separate word followed by a space and the word ether.

Name	Expanded Structure
	н н н-с-о-с-н н н
	н нн н-с-о-с-с-н н нн
	нн нн н-с-с-о-с-с-н нн нн
	CH_3 – CH_2 – O - CH_2 - CH_2 – CH_3
	CH_3 - CH_2 - CH_2 - O - CH_2 - CH_2 - CH_3

Synthesis

Primary alcohols react to produce an ether and water

R-OH + R-OH \rightarrow R-O-R + H₂O

8. Polymers-composed of many repeating units called monomers

Natural Polymers	Synthetic Polymers

9. Esters

Nomenclature-Esters (R-CO-O-R') are named as alkyl derivatives of

carboxylic acids. The alkyl (R') group is named first (the carbon chain from the alcohol). The R-CO-O part is then named as a separate word based on the carboxylic acid name, with the ending changed from *oic acid* to "*-oate*".

"Alcoholyl acidoate"

NAMES	Expanded STRUCTURE
	ннс-о-с-с-с-н н-с-с ннн нн
	ннс-о-с-с-н н-с-с нн нн

10. Amines-In amines, the hydrogen atoms in the ammonia have been replaced one at a time by hydrocarbon groups. On this page, we are only looking at cases where the hydrocarbon groups are simple alkyl groups.

- 11. Amino Acids are the chemical units or "building blocks" of the body that make up proteins. Contain both an amine group (-NH₂) and the carboxyl group (-COOH)
- **12.** Amides- (R-CO-NH₂) take the suffix "amide". There is no prefix form, and no location number is required since they always terminate a carbon chain, e.g. CH₃CONH₂ is named ethanamide.

VII. Organic Reactions

A. Substitution reaction-A functional group in a particular chemical compound is replaced by another

This occurs with a saturated structure.

Saturated, Substitution

B. Addition reaction-A reaction where a pi bond (either a double or triple bond) is replaced with the creation of two new covalent bonds. (for this course you only need to know the term addition and how it works)

Hydrogenization

 $CH_2=CH_2 + H_2 \rightarrow CH_3-CH_3$

Halogenation-bromine or chlorine

$$CH_2 = CH_2 + Br_2 \rightarrow BrCH_2 - CH_2Br$$

C. Fermentation

The enzymes in yeast break down sugar (glucose) into alcohol (ethanol) and carbon dioxide gas.

glucose $\xrightarrow{\text{yeast}}$ ethanol + carbon dioxide

$$C_6H_{12}O_6(aq) \xrightarrow{yeast} 2 C_2H_5OH(aq) + 2 CO_2(g)$$

D. ESTERFICATION-is the general name for a chemical reaction in which two chemicals (typically an acid and an alcohol) form an ester as the reaction product (water).

Synthesis-When a carboxylic acid and an alcohol react, a water molecule is removed, and an ester molecule is formed.

E. Saponification is commonly used to refer to the reaction of a **fat** (ester) with a metallic alkali (**base**) or oil to form **soap** and **glycerol**.

fat + Base --> soap + glycerol

F. Oxidation-(combustion)- Complete combustion (given sufficient oxygen) of any hydrocarbon produces carbon dioxide and water.

G. Polymerization

- 1. Joining of _____
- 2. Condensation Polymerization (evolves _____)

$2HOCH_2CH_2OH \rightarrow HOCH_2CH_2CH_2OH + HOH$

Monomers Dimer

Dimer is 2 monomers combined Trimer Polymer The prerequisite is 2 coupling groups on each end

3. Addition Polymerization

A double or triple bond is broken and a monomer adds to the chain

Note: N and n are very large numbers equal to about 2000.

H. Petroleum Reactions

1. Fractional Distillation- The various components of crude oil have different sizes, weights and boiling temperatures; so, the first step is to separate these components. Because they have different boiling temperatures, they can be separated easily by a process called fractional distillation.

Distillation of Crude Oil

2.Cracking-Large hydrocarbon are broken into smaller ones, yielding more valuable fractions (gasoline, fuel oils) using a catalyst.

> C15H32 - 2C2H4 + C3H6 + C8H18 ethene propene octane