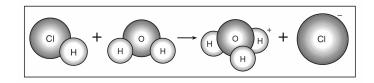
- 1. Which statement describes one acid-base theory?
 - A) An acid is an H^+ acceptor, and a base is an H^+ donor.
 - B) An acid is an H^+ donor, and a base is an H^+ acceptor.
 - C) An acid is an H⁻ acceptor, and a base is an H⁻ donor.
 - D) An acid is an H⁻ donor, and a base is an H⁻ acceptor.
- 2. Given the equation representing a reversible reaction:

 $NH_3(g) + H_2O(\ell) \leftrightarrow NH_4^+(aq) + OH^-(aq)$ According to one acid-base theory, the reactant that donates an H⁺ ion in the forward reaction is

A) NH3(g)	B) H2O(ℓ)
C) $NH_4^+(aq)$	D) OH ⁻ (aq)

3. Given the equation:


$HCl(g) + H_2O(\ell) \rightarrow X(aq) + Cl^{-}(aq)$
Which ion is represented by <i>X</i> ?

- A) hydroxide B) hydronium
- C) hypochlorite D) perchlorate
- 4. Given the reaction:

 $NH_3 + HCl \rightarrow NH_4Cl$ In this reaction ammonia molecules (NH₃) act as a base because they

- A) accept hydrogen ions (H⁺)
- B) accept hydroxide ions (OH-)
- C) donate hydrogen ions (H⁺)
- D) donate hydroxide ions (OH⁻)
- 5. According to one acid-base theory, NH₃ acts as a base when an NH₃ molecule
 - A) accepts an H⁺ion
 - B) donates an H^+ ion
 - C) accepts an OH^- ion
 - D) donates an $\rm OH^-$ ion

6. Given the diagram representing a reaction:

According to one acid-base theory, the water acts as

- A) a base because it accepts an H⁺
- B) a base because it donates an H^{+}
- C) an acid because it accepts an H⁺
- D) an acid because it donates an H⁺

7. Given the balanced equation representing a reaction:

 ${
m HSO_4}^-({
m aq}) \ + {
m H_2O}(\ell) \rightarrow {
m H_3O^+({
m aq})} \ + {
m SO_4}^{\ 2-}({
m aq})$

According to one acid-base theory, the $\mathrm{H_2O}(\ell)$ molecules act as

 A) a base because they accept H⁺ ions B) a base because they donate H⁺ ions C) an acid because they accept H⁺ ions D) an acid because they donate H⁺ ions 	
8. One acid-base theory defines a base as an	14. One acid-base theory states that an acid is
A) H+ donorB) H+ acceptorC) H donorD) H acceptor	 A) an electron donor B) a neutron donor C) an H⁺ donor D) an OH⁻ donor
9. One alternate acid-base theory states that an acid is an	15. Given the reaction:
A) H+ donorB) H+ acceptorC) OH- donorD) OH- acceptor	$\rm NH_3 + H_2O \leftrightarrow \rm NH_{4^+} + OH^-$
10. Given the balanced equation representing a reaction:	The water acts as the
$NH_3(g) + H_2O(\ell) \rightarrow NH_4^+ (aq) + OH^-(aq)$ According to one acid-base theory, the $NH_3(g)$	A) baseB) acidC) proton acceptorD) electron donor
molecules act as	16. Given the reaction at equilibrium:
 A) an acid because they accept H⁺ ions B) an acid because they donate H⁺ ions 	$\mathrm{HSO_{4^-}} + \mathrm{NH_3} \leftrightarrow \mathrm{SO_{4^2-}} + \mathrm{NH_{4^+}}$
C) a base because they accept H⁺ ionsD) a base because they donate H⁺ ions	What are the two species that are acids?
11. Which statement describes an alternate theory of acids and bases?	 A) NH₃ and NH₄⁺ B) NH₃ and SO₄²⁻ C) HSO₄⁻ and SO₄²⁻ D) HSO₄⁻ and NH₄⁺
 A) Acids and bases are both H⁺ acceptors. B) Acids and bases are both H⁺ donors. C) Acids are H⁺ acceptors, and bases are H⁺ donors. D) Acids are H⁺ donors, and bases are H⁺ acceptors. 	 17. Given the reaction at equilibrium: S²⁻⁺ H₂O ↔ HS⁻⁺ OH⁻ Which species acts as base by accepting a proton in the forward reaction?
12. Given the equation representing a reaction at	A) S ²⁻ B) H ₂ O C) HS ⁻ D) OH ⁻
equilibrium:	18. Given the reaction:
$NH_3(g)+H_2O(\ell) \leftrightarrow NH_4^+(aq)+OH^-(aq)$	$CO_3^{2-} + H_2O \leftrightarrow HCO_3^- + OH^-$
The H ⁺ acceptor for the forward reaction is	The H ₂ O molecule serves as a
A) H2O(ℓ) B) NH3(g) C) NH4 ⁺ (aq) D) OH ⁻ (aq)	A) weak baseB) strong baseC) proton donorD) proton acceptor
13. One acid-base theory states that an acid is	
A) an H ⁻ donorB) an H ⁻ acceptorC) an H ⁺ donorD) an H ⁺ acceptor	

19. According to an "alternative theory", H ₂ O is considered to be a base when it	20. Given the reaction:
 A) donates an electron B) accepts an electron C) donates a proton D) accepts a proton 	$\begin{array}{c} CH_{3}COOH(aq) + H_{2}O(\ell) \leftrightarrow CH_{3}COO^{-}(aq) + H_{3}O^{+}\\ (aq)\end{array}$
	In this reaction, which substances are accepting protons?
	 A) CH₃COOH(ag) and H₂O(ℓ) B) CH₃COOH(ag) and CH₃COO⁻(ag) C) H₂O(ℓ) and H₃O⁺(ag) D) H₂O(ℓ) and CH₃COO⁻(aq)