1. The atomic mass unit is defined as exactly $\frac{1}{12}$ the mass of an atom of

A) ${}_{6}^{12}C$ B) ${}_{6}^{14}C$ C) ${}_{12}^{24}Mg$ D) ${}_{12}^{26}Mg$

- 2. The atomic mass of an element is the weighted average of the
 - A) number of protons in the isotopes of that element
 - B) number of neutrons in the isotopes of that element
 - C) atomic numbers of the naturally occurring isotopes of that element
 - D) atomic masses of the naturally occurring isotopes of that element
- 3. The table below gives the atomic mass and the abundance of the two naturally occurring isotopes of chlorine.

Naturally Occuring Isotopes of Chlorine

	AtomicMassof	Natural
Isotopes	${f the Isotopes}$	Abundance
	(u)	(%)
$^{35}\mathrm{Cl}$	34.97	75.76
³⁷ Cl	36.97	24.24

Which numerical setup can be used to calculate the atomic mass of the element chlorine?

- A) (34.97 u)(75.76) + (36.97 u)(24.24)
- C) (34.97 u)(0.7576) + (36.97 u)(0.2424)

B) (34.97 u)(0.2424) + (36.97 u)(0.7576)
D) (34.97 u)(24.24) + (36.97 u)(75.76)

4. The atomic masses and the natural abundances of the two naturally occurring isotopes of lithium are shown in the table below.

Lithium Isotopes

Isotope	Atomic Mass (u)	Natural Abundance (%)
Li-6	6.02	7.5
Li-7	7.02	92.5

Which numerical setup can be used to determine the atomic mass of lithium?

- A) (0.075)(6.02 u) + (0.925)(7.02 u)
- B) (0.925)(6.02 u) + (0.075)(7.02 u)
- C) (7.5)(6.02 u) + (92.5)(7.02 u)
- D) (92.5)(6.02 u) + (7.5)(7.02 u)
- 5. The atomic mass of titanium is 47.88 atomic mass units. This atomic mass represents the
 - A) total mass of all the protons and neutrons in an atom of Ti
 - B) total mass of all the protons, neutrons, and electrons in an atom of Ti
 - C) weighted average mass of the most abundant isotope of Ti
 - D) weighted average mass of all the naturally occurring isotopes of Ti
- 6. What information is necessary to determine the atomic mass of the element chlorine?
 - A) the atomic mass of each artificially produced isotope of chlorine, only
 - B) the relative abundance of each naturally occurring isotope of chlorine, only
 - C) the atomic mass and the relative abundance of each naturally occurring isotope of chlorine
 - D) the atomic mass and the relative abundance of each naturally occurring and artificially produced isotope of chlorine

- 7. Which value of an element is calculated using both the mass and the relative abundance of each of the naturally occurring isotopes of this element?
 - A) atomic number B) atomic mass
 - C) half-life D) molar volume
- 8. An element occurs as a mixture of isotopes. The atomic mass of the element is based upon
 - A) the masses of the individual isotopes, only
 - B) the relative abundances of the isotopes, only
 - C) both the masses and the relative abundances of the individual isotopes
 - D) neither the masses nor the relative abundances of the individual isotopes
- 9. The average isotopic mass of chlorine is 35.5. Which mixture of isotopes (shown as percents) produces this average mass?
 - A) 50% ^{12}C and 50% ^{13}C
 - B) 50% ³⁵Cl and 50% ³⁷Cl
 - C) 75% ³⁵Cl and 25% ³⁷Cl
 - D) 75% ¹²C and 25% ¹³C
- 10. The atomic mass of an element is defined as the weighted average mass of that element's
 - A) most abundant isotope
 - B) least abundant isotope
 - C) naturally occurring isotopes
 - D) radioactive isotopes
- 11. If 75.0% of the isotopes of an element have a mass of 35.0 amu and 25.0% of the isotopes have a mass of 37.0 amu, what is the atomic mass of the element?
 - A) 35.0 amu B) 36.0 amu
 - C) 35.5 amu D) 37.0 amu
- 12. A sample of element X contains 90. percent ${}^{35}X$ atoms, 8.0 percent ${}^{37}X$ atoms, and 2.0 percent ${}^{38}X$ atoms. The average isotopic mass is closest to

A) 32 B) 35 C) 37 D) 38

- 13. A 100.00-gram sample of naturally occurring boron contains 19.78 grams of boron-10 (atomic mass = 10.01 atomic mass units) and 80.22 grams of boron-11 (atomic mass = 11.01 atomic mass units). Which numerical setup can be used to determine the atomic mass of naturally occurring boron?
 - A) (0.1978)(10.01) + (0.8022)(11.01)
 - B) (0.8022)(10.01) + (0.1978)(11.01)
 - C) (0.1978)(10.01)/(0.8022)(11.01)
 - D) (0.8022)(10.01)/(0.1978)(11.01)

- 14. The atomic mass of element A is 63.6 atomic mass units. The only naturally occurring isotopes of element A are A-63 and A-65. The percent abundances in a naturally occurring sample of element A are closest to
 - A) 31% A-63 and 69% A-65
 - B) 50% *A*-63 and 50% *A*-65
 - C) 69% *A*-63 and 31% *A*-65
 - D) 100% A-63 and 0% A-65
- 15. Hydrogen has three isotopes with mass numbers of1, 2, and 3 and has an average atomic mass of1.00794 amu. This information indicates that
 - A) equal numbers of each isotope are present
 - B) more isotopes have an atomic mass of 2 or 3 than of 1
 - C) more isotopes have an atomic mass of 1 than of 2 or 3
 - D) isotopes have only an atomic mass of 1