1. Which of the following explains why the electron configuration below cannot exist?

- A) Hund's rule
- B) Pauli exclusion principle
- C) Heisenberg uncertainty principle
- D) Bohr's model of the atom
- E) It can exist
- 2. Which of the following explains why the electron configuration below cannot exist?

- A) Hund's Rule
- B) Pauli exclusion principle
- C) Heisenberg uncertainty principle
- D) Rutherford's empty space model
- E) It can exist
- 3. Which of the following is the correct electron configuration for a neutral atom of oxygen in the ground state?
 - A) $1s^2 2p^4$ C) $1s^2 2s^2 2p^2$ E) $1s^2 2s^2 2p^6 3s^2 3p^4$ B) $1s^2 2s^2 2p^4$
- 4. Which of the following could not represent the electron configuration of a neutral atom in the ground state?
 - A) 1s² 2s² 2p⁶ 3s²3p⁴
 B) 1s² 2s² 2p²
 C) 1s² 2s² 2p⁶ 3s³3p⁴
 D) 1s² 2s² 2p⁶ 3s²
 E) 1s² 2s² 2p⁶ 3s¹

- 5. Base your answer to the following question on the choices below.
 - (A) Pauli exclusion principle
 - (B) Heisenberg uncertainty principle
 - (C) Hund's rule
 - (D) Wave nature of matter
 - (E) Photoelectric effect

Which states that electrons half fill an orbital with parallel spin, before completely filling it?

A) A B) B C) C D) D E) E

- 6. The ground state electronic configuration for an atom of neon, 20 ₁₀Ne, is
- 7. Which species has the same number of electrons as the magnesium ion, Mg²⁺?

A) Ca^{2+} B) Na^+ C) F D) Ne^+ E) Ba^{2+}

- The atomic number of an element whose electronic configuration is 1s²2s²2p¹ is
 - A) 1 B) 2 C) 3 D) 4 E) 5
- 9. The electronic configuration of the S^{2-} ion is
 - A) ls²2s²2p⁶3s²3p² B) 1s²2s²2p⁶3s²3p⁴
 - C) 1s²2s²2p⁶3s²3p⁵ D) 1s²2s²2p⁶3s²3p⁶
 - E) 1s²2s²2p⁶3s⁴3p⁴
- 10. The electronic configuration of the neon atom, ²⁰10 Ne, is
 - A) $1s^22s^22p^6$
 - B) 1s²2s²2p⁶3s¹
 - C) 1s²2s²2p⁶3s²
 - D) 1s²2s²2p⁶3s²3p⁶3d²
 - E) $1s^22s^22p^63s^23p^8$
- 11. The shell electron configuration of nitrogen, 7N, is

A) 2, 5	B) 2, 7
C) 2, 8, 4	D) 2, 8, 5
E) 5, 2	

12. Lithium, 3Li, has the ground state electron configuration of	16. How many <i>subshells</i> are shown in this configuration?
A) $1s^22s^1$ B) $1s^22s^2$ C) $1s^22s^2$ D) $1s^22s^22p^63s^1$ E) $2s^3$	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² A) 4 B) 7 C) 12 D) 15 E) 27
 13. Potassium ion, K⁺ has the same electronic structure as a neutral atom of A) argon B) calcium C) sulfur D) xenon E) neon 14. In the excited state, a possible electron configuration of aluminum, 13A1, is A) 1s²2s²2p⁶3s³ B) 1s²2s²2p⁶3s²3d¹ C) 1s²2s²2p⁶3s²3d¹ D) 1s²2s²2p⁶3s²3d⁶4s²4p¹ E) 1s²2s²2p⁶3s²3d² 	17. Which is an 'impossible' configuration? A) $1s^22s^22p^63s^23p^6$ B) $1s^22s^22p^63s^23p^63d^{10}4s^04p^1$ C) $1s^22s^22p^93s^23p^63d^{10}4s^24p^2$ D) $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$ E) $1s^22s^22p^63s^23p^4$ 18. Which is an <i>impossible</i> configuration? A) $1s^22s^22p^63s^23p^6$ B) $1s^22s^22p^63s^23p^6$ B) $1s^22s^22p^63s^23p^63d^{10}$ C) $1s^22s^22p^63s^23p^63d^{5}4s^2$ D) $1s^22s^22p^63s^23p^63d^{10}4s^25s^2$ E) $1s^22s^22p^63s^23p^64s^1$
15. The electron configuration 1s ² 2s ² 2p ⁶ 3s ¹ 3p ¹ could represent a	19. How many electrons are in <i>each</i> orbital of a completed 3d–sublevel?
 A) sodium ion B) manganese atom C) calcium atom in the ground state D) sodium ion in an excited state E) magnesium atom in an excited state 	 A) 2 B) 6 C) 10 D) 14 E) 18 20. What is the maximum number of subshells in the 3rd energy level of an atom? A) 2 B) 3 C) 8 D) 9 E) 18