4.07 Excited State (Bohr) and Emission Spectra

 An electron in a sodium move from the second sodium atom becomes A) a positive ion B) a negative ion C) an atom in an excit D) an atom in the grou A bromine atom in an electron configuration A) 2-8-18-6 C) 2-8-17-7 Which electron configuration A) 2-8-18-6 C) 2-8-17-7 Which electron configuration A) 2-1 B) 2-7-4 C Which statement descristate becomes excited? A) The atom absorbs electrons move to a B) The atom absorbs electrons move to a 	n atom gains enough energy to shell to the third shell. The ed state and state excited state could have an of B) 2-8-18-7 D) 2-8-17-8 uration represents the electrons d state? C) 2-8-7 D) 2-4 ibes how an atom in the ground energy, and one or more a higher electron shell. energy, and one or more	 8. Which is the electron configuration of an element with a completely filled third principal energy level A) 2-8-2 B) 2-8-8 C) 2-8-16-2 D) 2-8-18-2 9. An atom with the electron configuration of 2-8-13 has an incomplete A) 2p sublevel B) second principal energy level C) third principal energy level D) 4s sublevel 10. Which electron configuration is possible for a nitrogen atom in the excited state? A) 2-5 B) 2-4-1 C) 2-6 D) 2-4 11. Which electron configuration represents an atom an excited state? A) 2-8-2 B) 2-8-1 C) 2-8 D) 2-7-2 12. As an electron moves from its ground state to an excited state, the potential energy of the atom 					
 D) The atom releases energy, and one or more electrons move to a lower electron shell. 5. Which electron configuration represents an atom in an excited state? A) 2–7 B) 2–6–2 C) 2–8–1 D) 2–8–8–2 		 A) 2-7-3 B) 2-7-6 C) 2-8-2 D) 2-8-5 14. The atoms in a sample of an element are in excited states. A bright-line spectrum is produced when these atoms 					
 6. Which electron configuration strontium atom in an example. A) 2-8-18-7-1 C) 2-8-18-8-1 7. Compared to an atom of an atom of hydrogen in A) absorbed energy D) a base base base base base base base ba	uration could represent a xcited state? B) 2-8-18-7-3 D) 2-8-18-8-2 of hydrogen in the ground state, n the excited state has	C) emit energy D) emit positrons D) emit positrons					
B) released energyC) neither released no	r absorbed energy						

15. Given the bright-line spectra of three elements and the spectrum of a mixture formed from at least two of these elements:

Bright-Line Spectra												
Element D	 										1 1	
Element E											i 1	
Element G											 1	
Mixture											 	
750 nm 360 nm Which elements are present in this mixture?												
A) <i>E</i> and <i>D</i> , only B) <i>E</i> and <i>G</i> , only C) <i>D</i> and <i>G</i> , only D) <i>D</i> , <i>E</i> , and <i>G</i>												

- 16. A specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state. This emitted energy can be used to determine the
 - A) mass of the sample
 - B) volume of the sample
 - C) identity of the element
 - D) number of moles of the element

17. The bright-line spectra produced by four elements are represented in the diagram below.

Bright-Line Spectra of Four Elements

Given the bright-line spectrum of a mixture formed from two of these elements:

Which elements are present in this mixture?

A) A and D B) A and X C) Z and D D) Z and X

18. The diagram below represents the bright-line spectra of four elements and a bright-line spectrum produced by a mixture of three of these elements.

Which element is not present in the mixture?

	A) <i>A</i>	B) <i>D</i>	C) <i>X</i>	D) <i>Z</i>
--	-------------	-------------	-------------	-------------

- 19. During a flame test, a lithium salt produces a characteristic red flame. This red color is produced when electrons in excited lithium atoms
 - A) are lost by the atoms
 - B) are gained by the atoms
 - C) return to lower energy states within the atoms
 - D) move to higher energy states within the atoms
- 20. What must occur when an electron in an atom returns from a higher energy state to a lower energy state?
 - A) A specific amount of energy is released.
 - B) A random amount of energy is released.
 - C) The atom undergoes transmutation.
 - D) The atom spontaneously decays.

21. The diagram below represents the bright-line spectra of four elements and a bright-line spectrum produced by a mixture of two of these elements.

