1. A balanced equation representing a chemical reaction can be written using
A) chemical formulas and mass numbers
B) chemical formulas and coefficients
C) first ionization energies and mass numbers
D) first ionization energies and coefficients

2 . Which chemical equation is correctly balanced?
A) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
C) $2 \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}$ (s) $+\mathrm{Cl}_{2}(\mathrm{~g})$
D) $2 \mathrm{KCl}(\mathrm{s}) \rightarrow 2 \mathrm{~K}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})$
3. Given the unbalanced equation:
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ \qquad $\mathrm{CO} \rightarrow$ \qquad Fe + \qquad CO_{2}

When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
4. Given the unbalanced equation:
$__{-} \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow _\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$
When the equation is balanced using the smallest whole-number coefficients, what is the coefficient of Al ?
A) 1
B) 2
C) 3
D) 4
5. If an equation is balanced properly, both sides of the equation must have the same number of
A) atoms
B) coefficients
C) molecules
D) moles of molecules
6. Given the unbalanced equation:

$$
\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4
7. Which equation is correctly balanced?
A) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{Ca}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaCl}$
C) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Ca}+\mathrm{Cl}_{2} \rightarrow \mathrm{Ca}_{2} \mathrm{Cl}$
8. Given the unbalanced equation:
$-\mathrm{Al}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow-\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O_{2} (g)?
A) 6
B) 2
C) 3
D) 4
9. Given the unbalanced equation:
\qquad $\mathrm{Na}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{H}_{2}+$ \qquad NaOH

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for $\mathrm{H}_{2} \mathrm{O}$ is
A) 1
B) 2
C) 3
D) 4
10. Given the unbalanced equation:
\qquad

$$
\mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow
$$

\qquad $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$

When the equation is balanced using smallest whole numbers, the coefficient of $\mathrm{N}_{2}(\mathrm{~g})$ will be
A) 1
B) 2
C) 5
D) 4
11. Given the unbalanced equation:
$\ldots \mathrm{CaSO}_{4}+\ldots \mathrm{AlCl}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{CaCl}_{2}$
What is the coefficient of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ when the equation is completely balanced using the smallest whole-number coefficients?
A) 1
B) 2
C) 3
D) 4
12. Given the unbalanced equation:

$$
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

When the equation is correctly balanced, the coefficient of $\mathrm{H}_{2} \mathrm{O}$ will be
A) 1
B) 2
C) 3
D) 4
13. When the equation
 is correctly balanced, what is the coefficient of CuSO_{4} ?
A) 1
B) 2
C) 3
D) 4
14. When the equation

$$
\ldots \mathrm{C}_{2} \mathrm{H}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

is balanced using smallest whole numbers, what is the coefficient of the O_{2} ?
A) 1
B) 2
C) 3
D) 4
15. Which equation is correctly balanced?
A) $\mathrm{CaO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
B) $\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
16. Given the equation:

$$
\ldots \mathrm{FeCl}_{2}+_\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow _\mathrm{FeCO}_{3}+_\mathrm{NaCl}
$$

When the equation is correctly balanced using the smallest whole numbers, the coefficient of NaCl is
A) 6
B) 2
C) 3
D) 4
17. When the equation
$-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{ZnCl}_{2} \rightarrow _\mathrm{AlCl}_{3}+\ldots \mathrm{ZnSO}_{4}$
is correctly balanced using the smallest whole number coefficients, the sum of the coefficients is
A) 9
B) 8
C) 5
D) 4
18. When the equation
\qquad $\mathrm{Cu}_{2} \mathrm{~S}+$ $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{Cu}_{2} \mathrm{O}+$ \qquad SO_{2}
is completely balanced using smallest whole numbers the coefficient of the O_{2} would be
A) 5
B) 2
C) 3
D) 4
19. When the equation
$\ldots \mathrm{SiO}_{2}+\ldots \mathrm{C} \rightarrow _\mathrm{SiC}+\ldots \mathrm{CO}$
is correctly balanced using whole-number coefficients, the sum of all the coefficients is
A) 6
B) 7
C) 8
D) 9
20. Given the unbalanced equation:
$-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+__{-} \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow-\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{CaSO}_{4}$
When the equation is completely balanced using the smallest whole number coefficients the sum of the coefficients is
A) 5
B) 9
C) 3
D) 4

