- 1. A balanced equation representing a chemical reaction can be written using
 - A) chemical formulas and mass numbers
 - B) chemical formulas and coefficients
 - C) first ionization energies and mass numbers
 - D) first ionization energies and coefficients
- 2. Which chemical equation is correctly balanced?
 - A) $H_2(g) + O_2(g) \rightarrow H_2O(g)$
 - B) $N_2(g) + H_2(g) \rightarrow NH_3(g)$
 - C) $2NaCl(s) \rightarrow Na(s) + Cl_2(g)$
 - D) $2KCl(s) \rightarrow 2K(s) + Cl_2(g)$
- 3. Given the unbalanced equation:

 $\underline{\qquad} \operatorname{Fe}_2\operatorname{O}_3 + \underline{\qquad} \operatorname{CO} \rightarrow \underline{\qquad} \operatorname{Fe} + \underline{\qquad} \operatorname{CO}_2$

When the equation is correctly balanced using the *smallest* whole-number coefficients, what is the coefficient of CO?

A) 1 B) 2 C) 3 D) 4

4. Given the unbalanced equation:

 $_$ Al + $_$ CuSO₄ \rightarrow $_$ Al₂(SO₄)₃ + $_$ Cu

When the equation is balanced using the *smallest* whole-number coefficients, what is the coefficient of Al?

A) 1	B) 2	C) 3	D) 4
------	------	------	------

- 5. If an equation is balanced properly, both sides of the equation must have the same number of
 - A) atoms B) coefficients
 - C) molecules D) moles of molecules
- 6. Given the unbalanced equation:

 $\underline{\qquad} Mg(ClO_3)_2(s) \rightarrow \underline{\qquad} MgCl_2(s) + \underline{\qquad} O_2(g)$

What is the coefficient of O₂ when the equation is balanced correctly using the *smallest* whole number coefficients?

A) 1 B) 2 C) 3 D) 4

- 7. Which equation is correctly balanced?
 - A) H₂ + O₂ \rightarrow H₂O
 - B) $Ca + Cl_2 \rightarrow CaCl$
 - $C) \hspace{0.2cm} 2 \hspace{0.2cm} \mathrm{H_2} + \mathrm{O_2} \rightarrow 2 \hspace{0.2cm} \mathrm{H_2O}$
 - D) Ca + Cl₂ \rightarrow Ca₂Cl
- 8. Given the unbalanced equation:

 $_$ Al(s) + $_$ O₂(g) \rightarrow $_$ Al₂O₃(s)

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O₂ (g)?

A) 6 B) 2 C) 3 D) 4

9. Given the unbalanced equation:

 $_$ Na + $_$ H₂O \rightarrow $_$ H₂ + $_$ NaOH

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for H₂O is

A) 1 B) 2 C) 3 D) 4

10. Given the unbalanced equation:

 $_$ N₂(g) + $_$ O₂(g) → $_$ N₂O₅(g)

When the equation is balanced using smallest whole numbers, the coefficient of $N_2(g)$ will be

A) 1 B) 2 C) 5 D) 4

11. Given the unbalanced equation:

 $_$ CaSO₄ + $_$ AlCl₃ \rightarrow Al₂(SO₄)₃ + $_$ CaCl₂

What is the coefficient of Al₂(SO₄)₃ when the equation is completely balanced using the smallest whole-number coefficients?

A) 1	B) 2	C) 3	D) 4					
2. Given the unbalanced equation:			13. When the equation					
$NaOH + H_3PO_4 \rightarrow Na_3PO_4 + H_2O$				Eu +H2 D2	$2SO_4 \rightarrow $ _	_CuSO4 + _	H2O +	
When the equation is correctly balanced, the coefficient of H ₂ O will be			is correctly balanced, what is the coefficient of CuSO4?					
A) 1 B	b) 2 C) 3 D)) 4	A) 1	B) 2	C) 3	D) 4		

14. When the equation

 $_C_2H_4 + _O_2 \rightarrow _CO_2 + _H_2O$

is balanced using smallest whole numbers, what is the coefficient of the O₂?

A) 1 B) 2 C) 3 D) 4

15. Which equation is correctly balanced?

A) CaO + $2H_2O \rightarrow Ca(OH)_2$

- B) NH₃ + 2O₂ \rightarrow HNO₃ + H₂O
- C) Ca(OH)₂ + 2H₃PO₄ \rightarrow Ca₃(PO₄)₂ + 3H₂O
- D) $Cu + H_2SO_4 \rightarrow CuSO_4 + H_2O + SO_2$

16. Given the equation:

 $_FeCl_2 + _Na_2CO_3 \rightarrow _FeCO_3 + _NaCl$

When the equation is correctly balanced using the smallest whole numbers, the coefficient of NaCl is

A) 6 B) 2 C) 3 D) 4

17. When the equation

 $_$ Al₂(SO₄)₃ + $_$ ZnCl₂ \rightarrow $_$ AlCl₃ + $_$ ZnSO₄

is correctly balanced using the smallest whole number coefficients, the sum of the coefficients is

A) 9 B) 8 C) 5 D) 4

18. When the equation

 $_$ Cu₂S + $_$ O₂ \rightarrow $_$ Cu₂O + $_$ SO₂

is completely balanced using smallest whole numbers the coefficient of the O₂ would be

A) 5 B) 2 C) 3 D) 4

19. When the equation

 $_$ SiO₂ + $_$ C \rightarrow $_$ SiC + $_$ CO

is correctly balanced using whole-number coefficients, the sum of all the coefficients is

A) 6 B) 7 C) 8 D) 9

20. Given the unbalanced equation:

 $_$ Al₂(SO₄)₃ + $_$ Ca(OH)₂ \rightarrow $_$ Al(OH)₃ + $_$ CaSO₄

When the equation is completely balanced using the smallest whole number coefficients the sum of the coefficients is

A) 5 B) 9 C) 3 D) 4