1. Given the balanced equation representing a reaction:
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}$
The mole ratio of NaOH to $\mathrm{Al}(\mathrm{OH})_{3}$ is
A) $1: 1$
B) $1: 3$
C) $3: 1$
D) $3: 7$
2. Given the balanced equation representing a reaction: $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ required for the complete combustion of 1.5 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ (g)?
A) .30 mol
B) 1.5 mol
C) 4.5 mol
D) 7.5 mol
3. Given the balanced equation representing a reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
What is the mole ratio of $\mathrm{CO}(\mathrm{g})$ to $\mathrm{CO}_{2}(\mathrm{~g})$ in this reaction?
A) $1: 1$
B) $1: 2$
C) $2: 1$
D) $3: 2$
4. Given the balanced equation representing the reaction between propane and oxygen:
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
According to this equation, which ratio of oxygen to propane is correct?
A) $\frac{5 \text { grams } \mathrm{O}_{2}}{1 \text { gram } \mathrm{C}_{3} \mathrm{H}_{8}}$
B) $\frac{5 \text { moles } \mathrm{O}_{2}}{1 \mathrm{~mole}_{3} \mathrm{H}_{8}}$
C) $\frac{10 \text { grams } \mathrm{O}_{2}}{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}$
D) $\frac{10 \text { moles } \mathrm{O}_{2}}{11 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}$
5. Given the balanced equation:
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}$
(g)

What is the total number of moles of CO_{2} formed when 20 . moles of HCl is completely consumed?
A) 5.0 mol
B) $10 . \mathrm{mol}$
C) $20 . \mathrm{mol}$
D) $40 . \mathrm{mol}$
6. Given the balanced equation representing a reaction:
$\mathrm{F}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})$
What is the mole ratio of $\mathrm{H}_{2}(\mathrm{~g})$ to $\mathrm{HF}(\mathrm{g})$ in this reaction?
A) $1: 1$
B) $1: 2$
C) $2: 1$
D) $2: 3$
7. Given the balanced equation:
$2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
What is the total number of moles of C that must completely react to produce 2.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
A) 1.0 mol
B) 2.0 mol
C) 3.0 mol
D) 4.0 mol
8. Given the reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
What is the mole-to-mole ratio between nitrogen gas and hydrogen gas?
A) $1: 2$
B) $1: 3$
C) $2: 2$
D) $2: 3$
9. Given the balanced equation:
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ that must react completely with 5.00 moles of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$?
A) 10.0
B) 20.0
C) 26.5
D) 32.5
10. Given the reaction:

$$
\begin{aligned}
& \mathrm{PbCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \\
& \mathrm{NaCl}(\mathrm{aq})
\end{aligned}
$$

What is the total number of moles of NaCl formed when 2 moles of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ react completely?
A) 1 mole
B) 2 moles
C) 3 moles
D) 4 moles
11. Given the equation:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many moles of oxygen are required to react completely with 1.0 mole of $\mathrm{C}_{2} \mathrm{H}_{2}$?
A) 2.5
B) 2.0
C) 5.0
D) 10
12. Given the reaction:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
What is the total number of moles of water needed to make 2.5 moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
A) 2.5
B) 6.0
C) 12
D) 15
13. Given the reaction:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)$

How many moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$ are needed to produce 24 moles of carbon dioxide?
A) 1.0 moles
B) 12 moles
C) 24 moles
D) 4.0 moles
14. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of CO_{2} produced when one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ is completely reacted?
A) 1
B) 2
C) 3
D) 4
15. Given the reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of NO produced when 1.0 mole of O_{2} is completely consumed?
A) 1.0 mole
B) 1.2 moles
C) 0.80 mole
D) 4.0 moles
16. Given the balanced equation:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

What total mass of iron is necessary to produce 1.00 mole of copper?
A) 26.0 g
B) 55.8 g
C) 112 g
D) 192 g
17. Given the reaction:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

What is the minimum number of grams of oxygen gas required to produce 1.00 mole of aluminum oxide?
A) 32.0 g
B) 48.0 g
C) 96.0 g
D) 192 g
18. Given the reaction:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

What is the total number of moles of aluminum oxide that can be formed when 54 grams of aluminum reacts completely with oxygen?
A) 1.0 mole
B) 2.0 moles
C) 3.0 moles
D) 4.0 moles
19. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of grams of $\mathrm{O}_{2}(\mathrm{~g})$ needed to react completely with 0.50 mole of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$?
A) $10 . \mathrm{g}$
B) $40 . \mathrm{g}$
C) $80 . \mathrm{g}$
D) 160 g
20. According to the reaction
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$,
the production of 2.0 moles of HCl would require 71. grams of Cl_{2} and
A) 1.0 g of H_{2}
B) 2.0 g of H_{2}
C) 3.0 g of H_{2}
D) 4.0 g of H_{2}
21. Given the reaction:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

How many grams of ammonia are produced when 1.0 mole of nitrogen reacts?
A) 8.5
B) 17
C) 34
D) 68
22. Given the reaction:

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ will be formed when 27 grams of Al reacts completely with O_{2} ?
A) 1.0
B) 2.0
C) 0.50
D) 4.0
23. Given the reaction:

$$
4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}
$$

How many grams of oxygen are completely consumed in the production of 1.00 mole of $\mathrm{Na}_{2} \mathrm{O}$?
A) 16.0
B) 32.0
C) 62.0
D) 124
24. Given the reaction:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

The total number of grams of O_{2} needed to produce 54 grams of water is
A) 36
B) 48
C) 61
D) 75
25. Given the balanced equation:

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

What is the total number of grams of $\mathrm{H}_{2} \mathrm{O}$ produced when 116 grams of the product, NaCl , is formed?
A) 9.0 g
B) 18 g
C) 36 g
D) 54 g
26. Given the reaction:

$$
\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}
$$

What is the total mass of $\mathrm{H}_{2} \mathrm{O}$ produced when 32 grams of Cu is completely consumed?
A) 9.0 g
B) 18 g
C) 36 g
D) 72 g
27. If 6.02×10^{23} molecules of N_{2} react according to the equation $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, the total number of molecules of NH_{3} produced is
A) 1.00
B) 2.00
C) 6.02×10^{23}
D) 12.0×10^{23}
28. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of CO_{2} molecules produced when one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ is consumed?
A) 6.02×10^{23}
B) $2\left(6.02 \times 10^{23}\right)$
C) $3\left(6.02 \times 10^{23}\right)$
D) $4\left(6.02 \times 10^{23}\right)$
29. Given the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

How many liters of ammonia, measured at STP, are produced when 28.0 grams of nitrogen is completely consumed?
A) 5.60
B) 11.2
C) 22.4
D) 44.8
30. Given the equation:

$$
6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})
$$

What is the minimum number of liters of $\mathrm{CO}_{2}(\mathrm{~g})$, measured at STP, needed to produce 32.0 grams of oxygen?
A) 264 L
B) 32.0 L
C) 192 L
D) 22.4 L
31. Given the reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
$$

What is the total number of liters of $\mathrm{O}_{2}(\mathrm{~g})$ at STP needed to produce 6.0×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}(l)$?
A) 11.2 L
B) 22.4 L
C) 33.6 L
D) 44.8 L
32. Given the reaction:

$$
\begin{aligned}
& \quad 2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \\
& \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

What volume of $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})$ will completely react to produce exactly 36 liters of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
A) 27 L
B) 2.0 L
C) 36 L
D) 4.0 L
33. Given the balanced equation:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of liters of $\mathrm{CO}_{2}(\mathrm{~g})$ produced when 20.0 liters of $\mathrm{O}_{2}(\mathrm{~g})$ are completely consumed?
A) 12.0 L
B) 22.4 L
C) 3.00 L
D) 5.00 L
34. Given the balanced equation:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?
A) 11.2 L
B) 22.4 L
C) 33.6 L
D) 44.8 L
35. Given the reaction:

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many liters of $\mathrm{O}_{2}(\mathrm{~g})$ are needed to produce exactly 200 liters of $\mathrm{CO}_{2}(\mathrm{~g})$?
A) 100 L
B) 200 L
C) 300 L
D) 400 L

