1. The concentration of a solution can be expressed in
A) milliliters per minute
B) parts per million
C) grams per kelvin
D) joules per gram
2. A 2400.-gram sample of an aqueous solution contains 0.012 gram of NH_{3}. What is the concentration of NH_{3} in the solution, expressed as parts per million?
A) 5.0 ppm
B) 15 ppm
C) $20 . \mathrm{ppm}$
D) $50 . \mathrm{ppm}$
3. Which unit can be used to express the concentration of a solution?
A) L / s
B) J / g
C) ppm
D) kPa
4. If 0.025 gram of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is dissolved in 100 . grams of $\mathrm{H}_{2} \mathrm{O}$, what is the concentration of the resulting solution, in parts per million?
A) $2.5 \times 10^{-4} \mathrm{ppm}$
B) 2.5 ppm
C) 250 ppm
D) $4.0 \times 10^{3} \mathrm{ppm}$
5. What is the concentration of a solution, in parts per million, if 0.02 gram of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is dissolved in 1000 grams of water?
A) 20 ppm
B) 2 ppm
C) 0.2 ppm
D) 0.02 ppm
6. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ are needed to be dissolved in water to make 100. grams of a 250 . ppm solution?
A) $4.00 \times 10^{5} \mathrm{~g}$
B) $2.50 \times 10^{4} \mathrm{~g}$
C) $4.00 \times 10^{-1} \mathrm{~g}$
D) $2.50 \times 10^{-2} \mathrm{~g}$
7. How many grams of KOH should be dissolved in water to make 2000.0 grams of a 10.0 ppm solution?
A) 2.00 g
B) $2.0 \times 10^{-1} \mathrm{~g}$
C) $2.0 \times 10^{-2} \mathrm{~g}$
D) $2.0 \times 10^{-3} \mathrm{~g}$
8. What is the concentration expressed in parts per million of a solution containing 5.0 grams of $\mathrm{NH}_{4} \mathrm{Cl}$ in 95.0 grams of $\mathrm{H}_{2} \mathrm{O}$?
A) $5.0 \times 10^{4} \mathrm{ppm}$
B) $2.0 \times 10^{7} \mathrm{ppm}$
C) $5.3 \times 10^{4} \mathrm{ppm}$
D) $1.9 \times 10^{7} \mathrm{ppm}$
9. An aqueous solution has a mass of 490 grams containing 8.5×10^{-3} gram of calcium ions. The concentration of calcium ions in this solution is
A) 4.3 ppm
B) 8.5 ppm
C) 17 ppm
D) 34 ppm
10. How many grams of NaCl are needed to be dissolved in water to make 1.0 gram of a 100.0 ppm solution?
A) $1.0 \times 10^{-4} \mathrm{~g}$
B) $1.0 \times 10^{-3} \mathrm{~g}$
C) $1.0 \times 10^{-2} \mathrm{~g}$
D) $1.0 \times 10^{-1} \mathrm{~g}$
