
- 1. A carbon-carbon triple bond is found in a molecule of 8. The general formula for the alkyne series is A) $C_n H_n$ B) $C_n H_{2n-2}$ A) butane B) butanone D) butyne C) $C_n H_{2n}$ D) $C_n H_{2n+2}$ C) butene 2. Which compound is an alkyne? covalent bond? A) C₂H₂ B) C₂H₄ C) C₄H₈ D) C₄H₁₀
- 3. Which general formula represents the compound CH₃ CH2CCH?
 - A) C_nH_n B) C_nH_{2n} C) C_nH_{2n-2} D) C_nH_{2n+2}
- 4. Given the structural formula:

$$H-C\equiv C-H$$

What is the total number of electrons shared in the bond between the two carbon atoms?

- A) 6 B) 2 C) 3 D) 4 5. Which formula represents propyne?
 - A) C₃H₄ B) C₃H₆ D) C₅H₁₀ C) C₅H₈
- 6. Which structural formula represents 2-pentyne?

7. Given the structural formula for ethyne:

$H-C \equiv C-H$

What is the total number of electrons shared between the carbon atoms?

A) 6 B) 2 C) 3 D) 4

- 9. Which series of hydrocarbons contains one triple
 - A) alkyne B) alkadiene C) alkane D) alkene
- 10. Which molecule contains a triple covalent bond?
- A) C₂H₂ B) C₂H₄ C) C₃H₆ D) C₃H₈ 11. What is the total number of pairs of electrons shared
- between the two adjacent carbon atoms in an ethyne molecule?

C) 3

D) 4

D) 4

- 12. If a hydrocarbon molecule contains a triple bond, its IUPAC name ends in
 - A) "-ane" B) "-ene" C) "-one" D) "-vne"

B) 2

A) 1

A) 6

- 13. Which compound is a member of the series which has the general formula $C_n H_{2n-2}$?
 - A) ethane B) ethene D) ethanol C) ethyne

B) 2

14. What is the number of hydrogen atoms in a molecule of ethyne?

C) 8

- 15. Which set of formulas represents alkenes?
 - A) C, CH4, CH4O B) C₂H₄, C₃H₆, C₄H₈ C) C₂H₂, C₂H₄, C₂H₆ D) CH₂, CH₃,CH₄
- 16. What is the total number of bonds between adjacent carbon atoms in an ethyne molecule?
 - A) 1 B) 2 C) 3 D) 5
- 17. Which molecule contains a triple covalent bond between adjacent carbon atoms?
 - A) C₂H₄ B) C₂H₂ C) C₃H₆ D) C₃H₈
- 18. Which hydrocarbon is a member of the series with the general formula $C_n H_{2n-2}$?
 - A) ethyne B) ethene C) butane D) benzene

19	O. Which general formula represents the homologous series of hydrocarbons that includes the compound 1-heptyne?		20	 Which compound is an unsaturated hydrocarbon? A) hexanal B) hexane C) hexanoic acid D) hexyne 	
	A) C _n H _{2n-6} C) C _n H _{2n}	B) C_nH_{2n-2}D) C_nH_{2n+2}		C) Hexanoic acid D) Hexylle	