- 1. What is required for a chemical reaction to occur?
 - A) standard temperature and pressure
 - B) a catalyst added to the reaction system
 - C) effective collisions between reactant particles
 - D) an equal number of moles of reactants and products
- 2. As the temperature of a chemical reaction in the gas phase is increased, the rate of the reaction increases because
 - A) fewer particle collisions occur
 - B) more effective particle collisions occur
 - C) the required activation energy increases
 - D) the concentration of the reactants increases
- 3. A chemical reaction between iron atoms and oxygen molecules can only occur if
 - A) the particles are heated
 - B) the atmospheric pressure decreases
 - C) there is a catalyst present
 - D) there are effective collisions between the particle
- 4. Why can an increase in temperature lead to more effective collisions between reactant particles and an increase in the rate of a chemical reaction?
 - A) The activation energy of the reaction increases.
 - B) The activation energy of the reaction decreases.
 - C) The number of molecules with sufficient energy to react increases.
 - D) The number of molecules with sufficient energy to react decreases.
- 5. A reaction is most likely to occur when reactant particles collide with
 - A) proper energy, only
 - B) proper orientation, only
 - C) both proper energy and proper orientation
 - D) neither proper energy nor proper orientation
- 6. Which event must *always* occur for a chemical reaction to take place?
 - A) formation of a precipitate
 - B) formation of a gas
 - C) effective collisions between reacting particles
 - D) addition of a catalyst to the reaction system

- 7. After being ignited in a Bunsen burner flame, a piece of magnesium ribbon burns brightly, giving off heat and light. In this situation, the Bunsen burner flame provides
 - A) ionization energy
 - B) activation energy
 - C) heat of reaction
 - D) heat of vaporization
- 8. Two reactant particles collide with proper orientation. The collision will be effective if the particles have
 - A) high activation energy
 - B) high ionization energy
 - C) sufficient kinetic energy
 - D) sufficient potential energy
- 9. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation:

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s).$

The reaction begins because the reactants

- A) are activated by heat from the Bunsen burner flame
- B) are activated by heat from the burning magnesium
- C) underwent an increase in entropy
- D) underwent a decrease in entropy
- 10. The energy needed to start a chemical reaction is called
 - A) potential energy B) kinetic energy
 - C) activation energy D) ionization energy
- 11. For a reaction at equilibrium, which change can increase the rates of the forward and reverse reactions?
 - A) a decrease in the concentration of the reactants
 - B) a decrease in the surface area of the products
 - C) an increase in the temperature of the system
 - D) an increase in the activation energy of the forward reaction

- 12. In most aqueous reactions as temperature increases, the effectiveness of collisions between reacting particles
 - A) decreases B) increases
 - C) remains the same
- 13. Given the reaction:

 $Mg + 2 H_2O \rightarrow Mg(OH)_2 + H_2$ At which temperature will the reaction occur at the greatest rate?

A)	25°C	B)	50°C
C)	75°C	D)	100°C

- 14. Which conditions will increase the rate of a chemical reaction?
 - A) decreased temperature and decreased concentration of reactants
 - B) decreased temperature and increased concentration of reactants
 - C) increased temperature and decreased concentration of reactants
 - D) increased temperature and increased concentration of reactants
- 15. Which statement explains why increasing the temperature increases the rate of a chemical reaction, while other conditions remain the same?
 - A) The reacting particles have less energy and collide less frequently.
 - B) The reacting particles have less energy and collide more frequently.
 - C) The reacting particles have more energy and collide less frequently.
 - D) The reacting particles have more energy and collide more frequently.
- 16. Which factors have the greatest effect on the rate of a chemical reaction between AgNO₃(aq)and Cu(s)?
 - A) solution concentration and temperature
 - B) solution concentration and pressure
 - C) molar mass and temperature
 - D) molar mass and pressure

17. Each of four test tubes contains a different concentration of HCI(aq) at 25°C. A 1-gram cube of Zn is added to each test tube. In which test tube is the reaction occurring at the fastest rate?

In each of the four beakers shown below, a
 2.0-centimeter strip of magnesium ribbon reacts with 100 milliliters of HCl(aq) under the conditions shown.

In which beaker will the reaction occur at the fastest rate?

- A) A B) B C) C D) D
- 19. A 1.0-gram piece of zinc reacts with 5 milliliters of HCl(aq). Which of these conditions of concentration and temperature would produce the greatest rate of reaction?
 - A) 1.0 M HCl(aq) at 20.°C
 - B) 1.0 M HCl(aq) at 40.°C
 - C) 2.0 M HCl(aq) at 20.°C
 - D) 2.0 M HCl(aq) at 40.°C
- 20. As the number of moles per liter of a reactant in a chemical reaction increases, the number of collisions between the reacting particles
 - A) decreases
- B) increases
- C) remains the same

21. Given the reaction:

 $A + B \rightarrow AB$

The table below shows student data obtained about the rate of reaction when the concentration of solution A is kept constant and the concentration of solution B is changed by adding H₂O. Based on the data, the student should conclude that the

Trial	Volume of	Volume of	Volume of	Reaction
	Solution A	Solution B	$H_2OAdded$	\mathbf{Time}
1	$10\mathrm{mL}$	$10\mathrm{mL}$	OmL	$2.8 \sec$
2	$10\mathrm{mL}$	$5\mathrm{mL}$	$5\mathrm{mL}$	$4.9 \sec$
3	$10\mathrm{mL}$	$3\mathrm{mL}$	$7\mathrm{mL}$	$10.4 \sec$

A) concentration has no effect on the reaction rate

- B) reaction rate increased when H2O was added
- C) reaction rate increased as solution B was diluted
- D) reaction rate decreased as solution B was diluted
- 22. As the number of effective collisions between reacting particles increases, the rate of reaction
 - A) decreases B) increases
 - C) remains the same
- 23. Four aluminum samples are each reacted with separate 1 M copper sulfate solutions under the same conditions of temperature and pressure. Which aluminum sample would react most rapidly?
 - A) 1 gram bar of Al
 - B) 1 gram of Al ribbon
 - C) 1 gram of Al pellets
 - D) 1 gram of Al powder
- 24. When a single 1-gram piece of zinc is added to 3 M hydrochloric acid at 25°C, the reaction is slow. Which procedure would most likely increase the rate of reaction if the reaction were repeated?
 - A) using 1 gram of powdered zinc
 - B) using 1 M hydrochloric acid
 - C) decreasing the temperature to 20.°C
 - D) decreasing the concentration of the zinc

25. Charcoal reacts with oxygen according to the equation

 $C(s) + O_2(g) \rightarrow CO_2(g).$

Which of the following changes would cause the greatest increase in the rate of reaction?

- A) decreasing the concentration of $O_2(g)$
- B) decreasing the pressure of $O_2(g)$
- C) using charcoal in powdered form
- D) using charcoal in lump form

Base your answers to questions **26** and **27** on the table below, which represents the production of 50 milliliters of CO₂ in the reaction of HCl with NaHCO₃. Five trials were performed under different conditions as shown. (The same mass of NaHCO₃ was used in each trial.)

	Particle Size	Concentration	$\boxed{ \textbf{Temperatur} (^{\circ}\textbf{C}) }$
Trial	of NaHCO ₃	${ m ofHCl}$	of HCl
A	small	1 M	20
B	large	1 M	20
C	large	$1 \mathrm{M}$	40
D	small	$2\mathrm{M}$	40
E	large	$2\mathrm{M}$	40

26. Which two trials could be used to measure the effect of surface area?

A) trials A and B B) trials A and C C) trials A and D D) trials B and D

27. Which trial would produce the fastest reaction?

- A) trial *A* B) trial *B*
- C) trial C D) trial D

28. Given the potential energy diagram for a reaction:

Reaction Coordinate

Which intervals are affected by the addition of a catalyst?

A) 1 and 2	B) 1 and 3
------------	------------

C) 2 and 4 D) 3 and 4

29. Which potential energy diagram represents the change in potential energy that occurs when a catalyst is added to a chemical reaction?

- 30. For a given reaction, adding a catalyst increases the rate of the reaction by
 - A) providing an alternate reaction pathway that has a higher activation energy
 - B) providing an alternate reaction pathway that has a lower activation energy
 - C) using the same reaction pathway and increasing the activation energy
 - D) using the same reaction pathway and decreasing the activation energy